Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies.

Identifieur interne : 002001 ( Main/Exploration ); précédent : 002000; suivant : 002002

The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies.

Auteurs : Andrea Clavijo Mccormick ; G Andreas Boeckler ; Tobias G. Köllner ; Jonathan Gershenzon ; Sybille B. Unsicker

Source :

RBID : pubmed:25429804

Descripteurs français

English descriptors

Abstract

BACKGROUND

The role of herbivore-induced plant volatiles as signals mediating the attraction of herbivore enemies is a well-known phenomenon. Studies with short-lived herbaceous plant species have shown that various biotic and abiotic factors can strongly affect the quantity, composition and timing of volatile emission dynamics. However, there is little knowledge on how these factors influence the volatile emission of long-lived woody perennials. The aim of this study was to investigate the temporal dynamics of herbivore-induced volatile emission of black poplar (Populus nigra) through several day-night cycles following the onset of herbivory. We also determined the influence of different herbivore species, caterpillars of the gypsy moth (Lymantria dispar) and poplar hawkmoth (Laothoe populi), and different herbivore developmental stages on emission.

RESULTS

The emission dynamics of major groups of volatile compounds differed strikingly in response to the timing of herbivory and the day-night cycle. The emission of aldoximes, salicyl aldehyde, and to a lesser extent, green leaf volatiles began shortly after herbivore attack and ceased quickly after herbivore removal, irrespective of the day-night cycle. However, the emission of most terpenes showed a more delayed reaction to the start and end of herbivory, and emission was significantly greater during the day compared to the night. The identity of the caterpillar species caused only slight changes in emission, but variation in developmental stage had a strong impact on volatile emission with early instar L. dispar inducing more nitrogenous volatiles and terpenoids than late instar caterpillars of the same species.

CONCLUSIONS

The results indicate that only a few of the many herbivore-induced black poplar volatiles are released in tight correlation with the timing of herbivory. These may represent the most reliable cues for herbivore enemies and, interestingly, have been shown in a recent study to be the best attractants for an herbivore enemy that parasitizes gypsy moth larvae feeding on black poplar.


DOI: 10.1186/s12870-014-0304-5
PubMed: 25429804
PubMed Central: PMC4262996


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies.</title>
<author>
<name sortKey="Mccormick, Andrea Clavijo" sort="Mccormick, Andrea Clavijo" uniqKey="Mccormick A" first="Andrea Clavijo" last="Mccormick">Andrea Clavijo Mccormick</name>
</author>
<author>
<name sortKey="Boeckler, G Andreas" sort="Boeckler, G Andreas" uniqKey="Boeckler G" first="G Andreas" last="Boeckler">G Andreas Boeckler</name>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25429804</idno>
<idno type="pmid">25429804</idno>
<idno type="doi">10.1186/s12870-014-0304-5</idno>
<idno type="pmc">PMC4262996</idno>
<idno type="wicri:Area/Main/Corpus">001F10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F10</idno>
<idno type="wicri:Area/Main/Curation">001F10</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F10</idno>
<idno type="wicri:Area/Main/Exploration">001F10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies.</title>
<author>
<name sortKey="Mccormick, Andrea Clavijo" sort="Mccormick, Andrea Clavijo" uniqKey="Mccormick A" first="Andrea Clavijo" last="Mccormick">Andrea Clavijo Mccormick</name>
</author>
<author>
<name sortKey="Boeckler, G Andreas" sort="Boeckler, G Andreas" uniqKey="Boeckler G" first="G Andreas" last="Boeckler">G Andreas Boeckler</name>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Circadian Rhythm (MeSH)</term>
<term>Cues (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Larva (MeSH)</term>
<term>Moths (physiology)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (chemistry)</term>
<term>Populus (immunology)</term>
<term>Populus (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Terpenes (isolation & purification)</term>
<term>Terpenes (metabolism)</term>
<term>Trees (MeSH)</term>
<term>Volatile Organic Compounds (isolation & purification)</term>
<term>Volatile Organic Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arbres (MeSH)</term>
<term>Composés organiques volatils (isolement et purification)</term>
<term>Composés organiques volatils (métabolisme)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Herbivorie (MeSH)</term>
<term>Larve (MeSH)</term>
<term>Papillons de nuit (physiologie)</term>
<term>Populus (composition chimique)</term>
<term>Populus (immunologie)</term>
<term>Populus (physiologie)</term>
<term>Rythme circadien (MeSH)</term>
<term>Signaux (MeSH)</term>
<term>Terpènes (isolement et purification)</term>
<term>Terpènes (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Terpenes</term>
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Composés organiques volatils</term>
<term>Terpènes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Terpenes</term>
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Composés organiques volatils</term>
<term>Terpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Papillons de nuit</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Moths</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Circadian Rhythm</term>
<term>Cues</term>
<term>Herbivory</term>
<term>Larva</term>
<term>Signal Transduction</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Arbres</term>
<term>Herbivorie</term>
<term>Larve</term>
<term>Rythme circadien</term>
<term>Signaux</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The role of herbivore-induced plant volatiles as signals mediating the attraction of herbivore enemies is a well-known phenomenon. Studies with short-lived herbaceous plant species have shown that various biotic and abiotic factors can strongly affect the quantity, composition and timing of volatile emission dynamics. However, there is little knowledge on how these factors influence the volatile emission of long-lived woody perennials. The aim of this study was to investigate the temporal dynamics of herbivore-induced volatile emission of black poplar (Populus nigra) through several day-night cycles following the onset of herbivory. We also determined the influence of different herbivore species, caterpillars of the gypsy moth (Lymantria dispar) and poplar hawkmoth (Laothoe populi), and different herbivore developmental stages on emission.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The emission dynamics of major groups of volatile compounds differed strikingly in response to the timing of herbivory and the day-night cycle. The emission of aldoximes, salicyl aldehyde, and to a lesser extent, green leaf volatiles began shortly after herbivore attack and ceased quickly after herbivore removal, irrespective of the day-night cycle. However, the emission of most terpenes showed a more delayed reaction to the start and end of herbivory, and emission was significantly greater during the day compared to the night. The identity of the caterpillar species caused only slight changes in emission, but variation in developmental stage had a strong impact on volatile emission with early instar L. dispar inducing more nitrogenous volatiles and terpenoids than late instar caterpillars of the same species.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The results indicate that only a few of the many herbivore-induced black poplar volatiles are released in tight correlation with the timing of herbivory. These may represent the most reliable cues for herbivore enemies and, interestingly, have been shown in a recent study to be the best attractants for an herbivore enemy that parasitizes gypsy moth larvae feeding on black poplar.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25429804</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies.</ArticleTitle>
<Pagination>
<MedlinePgn>304</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-014-0304-5</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The role of herbivore-induced plant volatiles as signals mediating the attraction of herbivore enemies is a well-known phenomenon. Studies with short-lived herbaceous plant species have shown that various biotic and abiotic factors can strongly affect the quantity, composition and timing of volatile emission dynamics. However, there is little knowledge on how these factors influence the volatile emission of long-lived woody perennials. The aim of this study was to investigate the temporal dynamics of herbivore-induced volatile emission of black poplar (Populus nigra) through several day-night cycles following the onset of herbivory. We also determined the influence of different herbivore species, caterpillars of the gypsy moth (Lymantria dispar) and poplar hawkmoth (Laothoe populi), and different herbivore developmental stages on emission.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The emission dynamics of major groups of volatile compounds differed strikingly in response to the timing of herbivory and the day-night cycle. The emission of aldoximes, salicyl aldehyde, and to a lesser extent, green leaf volatiles began shortly after herbivore attack and ceased quickly after herbivore removal, irrespective of the day-night cycle. However, the emission of most terpenes showed a more delayed reaction to the start and end of herbivory, and emission was significantly greater during the day compared to the night. The identity of the caterpillar species caused only slight changes in emission, but variation in developmental stage had a strong impact on volatile emission with early instar L. dispar inducing more nitrogenous volatiles and terpenoids than late instar caterpillars of the same species.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The results indicate that only a few of the many herbivore-induced black poplar volatiles are released in tight correlation with the timing of herbivory. These may represent the most reliable cues for herbivore enemies and, interestingly, have been shown in a recent study to be the best attractants for an herbivore enemy that parasitizes gypsy moth larvae feeding on black poplar.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McCormick</LastName>
<ForeName>Andrea Clavijo</ForeName>
<Initials>AC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boeckler</LastName>
<ForeName>G Andreas</ForeName>
<Initials>GA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Köllner</LastName>
<ForeName>Tobias G</ForeName>
<Initials>TG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Unsicker</LastName>
<ForeName>Sybille B</ForeName>
<Initials>SB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013729">Terpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002940" MajorTopicYN="N">Circadian Rhythm</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003463" MajorTopicYN="N">Cues</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013729" MajorTopicYN="N">Terpenes</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055549" MajorTopicYN="N">Volatile Organic Compounds</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25429804</ArticleId>
<ArticleId IdType="pii">s12870-014-0304-5</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-014-0304-5</ArticleId>
<ArticleId IdType="pmc">PMC4262996</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1355-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Nov;27(11):2233-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11817078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 29;410(6828):577-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11279494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:545-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 May;50(5):911-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19246460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Oct;27(10):1433-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17669734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Feb 17;433(7027):704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Sep;217(5):767-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12712338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Nov;25(11):4737-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24220631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 Sep;31(9):2003-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1992 Sep;18(9):1641-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24254294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Aug;228(3):427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18493792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Jul;37(7):751-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21691808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Feb;138(2):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2012 Apr;51(2):95-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22197147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 May 15;1734(2):91-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15904867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21202-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2036-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2014 Feb;98:110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24359633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Insect Biochem Physiol. 2001 Apr;46(4):165-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11304750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>C R Biol. 2009 Feb-Mar;332(2-3):311-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19281961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11836-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1995 Mar;21(3):273-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24234060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2002 May;28(5):951-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Feb;36(2):429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22831282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 Sep;31(9):2033-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 May 11;20(9):R392-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20462477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2014 Oct;176(2):569-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25080178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2014 Feb;40(2):150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24496605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(2):194-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1586-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20047849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2009 Sep;35(9):999-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1893-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2008 Mar;34(3):281-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18185960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2004 Nov;30(11):2215-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15672666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2000 Jun;19(2):195-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Feb;37(2):150-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21249432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Jan;29(1):145-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12647859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1909-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24471487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1993 Mar;19(3):411-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24248945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 May;143(4):566-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):965-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):933-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15630092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1836-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24749758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Jun;36(6):620-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20490899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22503606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):12976-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17664416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(4):603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756770</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Boeckler, G Andreas" sort="Boeckler, G Andreas" uniqKey="Boeckler G" first="G Andreas" last="Boeckler">G Andreas Boeckler</name>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<name sortKey="Mccormick, Andrea Clavijo" sort="Mccormick, Andrea Clavijo" uniqKey="Mccormick A" first="Andrea Clavijo" last="Mccormick">Andrea Clavijo Mccormick</name>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002001 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002001 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25429804
   |texte=   The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25429804" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020